

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Precious Metals - Part 2 - The Spectroscopic Characterisation and X-Ray Crystal Structure of $\text{Pd}_2(\text{Pph}_3)_3\text{Cl}_5\text{O}$

M. S. Campos^a; N. H. Takata^a; A. M. P. Felicíssimo^a; E. E. Castellano^b

^a Chemistry Department, University of S. Paulo, São Paulo, SP, Brasil ^b Physics Department, University of S. Paulo, S. Carlos

To cite this Article Campos, M. S. , Takata, N. H. , Felicíssimo, A. M. P. and Castellano, E. E.(2000) 'Precious Metals - Part 2 - The Spectroscopic Characterisation and X-Ray Crystal Structure of $\text{Pd}_2(\text{Pph}_3)_3\text{Cl}_5\text{O}$ ', *Spectroscopy Letters*, 33: 5, 671 — 680

To link to this Article: DOI: 10.1080/00387010009350149

URL: <http://dx.doi.org/10.1080/00387010009350149>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**PRECIOUS METALS - PART 2 - THE SPECTROSCOPIC
CHARACTERISATION AND X-RAY CRYSTAL
STRUCTURE OF $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$**

Key Words: Palladium, NMR, Organometallic compound.

¹M.S. Campos, ¹N.H. Takata, ¹A.M.P. Felicíssimo, ²E.E. Castellano

¹Chemistry Department, University of S. Paulo, S. Paulo Av. Prof. Lineu Prestes, 748 05508-900 - São Paulo - SP - Brasil

²Physics Department, University of S.Paulo, S. Carlos

ABSTRACT

This work is on the synthesis and characterisation of a new phosphine stabilised palladium compound. The compound was first obtained from the rejects of cluster syntheses stored in the laboratory. Later on, it was prepared from PdCl_2 and triphenyl phosphine. The compound was characterised by ^{31}P { ^1H } NMR, UV/visible spectroscopy and elemental analysis. The crystal and molecular structure of $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$ was determined by X-ray analysis. The compound crystallizes in orthorhombic space group Pbca, N° 61, $a = 19.009(2)\text{\AA}$, $b = 22.283(2)\text{\AA}$, $c = 23.726(2)\text{\AA}$, $V = 10050(20)\text{\AA}^3$, $Z = 8$ residuals $R[\text{I}]>2\sigma(\text{I})] = 0.0457$ and $R(\text{all}) = 0.0636$, MoK α radiation, 20 °C.

INTRODUCTION

Different kinds of waste material are generated in the industry as a consequence of hydro and/or pyrometallurgy. These residues contain up to 25% of valuable metals, as well as elements such As, Hg, Cd, Se, etc. In most cases, these residues are hazardous wastes and dangerous for the environment. The decontamination of these residues is indispensable before their recycling in the classical metallurgical plants [1].

In the last decade, considerable changes occurred in the way transition metals (Au, Pd, Pt, In, etc) are used. During the last 20 years, the synthesis and characterisation of transition metal cluster compounds has provided a stimulating challenge for inorganic chemists. A great deal of interest has been directed towards the potential catalytic applications of gold cluster compounds[2-8].

Noble metals recovery from rejects collected in the laboratory has been a frequent concern, first of all due to economic purposes and also in order to avoid possible risks to the environment when rejects of this kind are thrown directly into the ecosystem.

The rejects stored in the laboratory contain a mixture of palladium, gold, and organic solvents (diethyl ether, ethanol, n-pentane, acetone, dichlorometane).

The recovery is normally processed following Clement's method [9] or the route developed in order to obtain gold as AuPPh_3Cl and palladium as $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ [10].

In this paper a new compound, first crystallised from laboratory rejects and later obtained through the reaction between PdCl_2 and triphenylphosphine is presented.

This compound was characterised by $^{31}\text{P}\{^1\text{H}\}$ NMR, UV/vis spectra , elemental analysis and single crystal X-ray diffraction.

EXPERIMENTAL SECTION

Measurements

The $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of this compound in CDCl_3 solutions was

recorded on a Brucker (DRX 500) spectrometer with H_3PO_4 as an external reference. UV-Vis absorption was realised in a U-3000 Shimadzu spectrometer. Elemental analysis was carried out at the Microanalysis Laboratory, University of São Paulo and X-ray data were measured on a Nonius CAD4 diffractometer.

Reagents

All solvents were of reagents grade and were used without further purification.

Preparation of $Pd_2(PPh_3)_2Cl_5O$ from $PdCl_2$

0.5 g de $PdCl_2$ (28 mmol) was dissolved in 0.2 mL of hydrochloric acid in a 250 mL Erlenmeyer flask. The solution is stirred and warmed (~60 °C) until complete dissolution of $PdCl_2$. This solution is added to the emulsion of 2.3 g (8.8 mmol) of triphenylphosphine in 50 mL of EtOH. The mixture is stirred for 5 hours until complete reaction and precipitation. The precipitate formed is collected using vacuum filtration, washed with several small portions of EtOH, 30 mL of acetone is added to the precipitate that is dissolved and the solution is filtered off, the solid that was not dissolved is discarded and the filtrate is layered with 3 times the volume of Et_2OH . Slow solvent diffusion produces yellow-orange crystals. Yield: 160 mg, after recrystallization from an acetone-diethyl ether solvent mixture. The bright orange crystals are soluble in CH_2Cl_2 , CH_3CN , CH_3OH , $CHCl_3$, and acetone and insoluble in saturated hydrocarbons and diethyl ether.

Anal. Calcd. for $Pd_2(PPh_3)_2Cl_5O$ (Mr 1191.85): C, 54.89; H, 3.72. Found: C, 54.42; H, 3.72. $^{31}P\{^1H\}$ NMR: singlet at δ 49.

Obtaining $Pd_2(PPh_3)_2Cl_5O$ from rejects collected in the laboratory

The laboratory reject (~5L) is filtered in order to separate the solid part from the solution.

The solution is distilled and the solvents obtained are separated following the method earlier described [10] to obtain $AuPPh_3Cl$. The solid initially obtained is burned in direct flame in order to liberate the organic material. The residue

TABLE 1
Crystallographic data for $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$

Chem formula	$\text{C}_{54}\text{H}_{44}\text{Cl}_{15}\text{OP}_3\text{Pd}_2$
Fw	1191.85
a	19.009(2) Å
b	22.283(2) Å
c	23.726(2) Å
V	10050(20) Å ³
Z	8
Space group	Pbca (no.61)
T	20 °C
λ	1.54184 Å
ρ _{calc}	1.575 mg/m ³
μ(MoKα)	94.28 cm ⁻¹
R[I >2σ (I)]	0.0457
R _w (all)	0.0636

obtained is dissolved in aqua regia. The solution is filtered and evaporated near dryness, then concentrated hydrochloric acid (three times) is added and the solution is evaporated until dryness. EtOH is added and the resulting solution is filtered through diatomaceous earth, and an emulsion of triphenylphosphine; ethanol is added and the mixture is stirred for 3 hours. A precipitate is formed and is filtered under vacuum. The precipitate is then dissolved with a small amount of acetone and filtered through diatomaceous earth. Three times this volume of Et₂O is added to the filtrate. Overnight, small crystals are formed. These crystals are dissolved in a small amount of acetone in a small flask and Et₂O is added via slow solvent diffusion, and yellow-orange crystals $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$ are obtained.

X-ray determined structure

Well formed orange crystals of the formula were prepared by slow diffusion of acetone into a diethyl ether solution. A summary of crystal and refinement data is

TABLE 2

Selected bond lengths (Å) and bond angles (°) for $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$

Atoms	X	Y	Z	U(eq)
Pd(1)	5317(1)	2031(1)	4249(1)	34(1)
Pd(2)	4307(1)	1616(1)	3286(1)	35(1)
P(2)	4926(1)	2157(1)	5159(1)	36(1)
P(3)	4250(1)	773(1)	2774(1)	40(1)
Cl(1)	6297(1)	1498(1)	4558(1)	40(1)
Cl(2)	4576(1)	1134(1)	4140(1)	42(1)
Cl(3)	5547(1)	1781(1)	3254(1)	40(1)
Cl(4)	4171(1)	2182(1)	2480(1)	50(1)
Cl(5)	3115(1)	1603(1)	3459(1)	53(1)
C(112)	5282(2)	2401(2)	6265(2)	47(2)
C(113)	5732(2)	2548(2)	6706(1)	56(1)
C(114)	6439(1)	2660(1)	6599(1)	57(2)
C(115)	6697(2)	2625(2)	6052(2)	52(2)
C(116)	6247(1)	2478(1)	5611(1)	44(1)
C(121)	4545(2)	1473(2)	5443(2)	45(1)
C(111)	5540(2)	2366(2)	5717(1)	39(1)
C(122)	4938(2)	947(2)	5416(2)	56(2)
C(123)	4666(3)	417(2)	5635(2)	70(2)
C(124)	4002(3)	412(2)	5879(2)	90(3)
C(125)	3609(2)	937(3)	5905(2)	107(4)
C(126)	3881(2)	1468(2)	5687(2)	71(2)
C(131)	4233(2)	2716(2)	5190(2)	44(1)
C(132)	4329(2)	3244(2)	5493(2)	62(2)
C(133)	3804(3)	3679(2)	5498(2)	83(3)
C(134)	3184(2)	3585(2)	5200(3)	89(3)
C(135)	3088(2)	3057(2)	4898(2)	75(2)
C(136)	3613(2)	2622(2)	4893(2)	58(2)
C(211)	6138(2)	3493(2)	4620(2)	53(2)
C(212)	5675(2)	3893(3)	4875(2)	80(2)
C(213)	5928(4)	4327(3)	5244(3)	122(4)
C(214)	6644(4)	4362(3)	5358(3)	128(5)
C(215)	7107(3)	3962(3)	5103(3)	108(4)
C(216)	6854(2)	3528(3)	4735(2)	72(2)
C(221)	6510(2)	2951(2)	3586(2)	48(2)
C(222)	7083(2)	2575(2)	3675(2)	61(2)
C(223)	7667(2)	2611(2)	3324(2)	75(2)

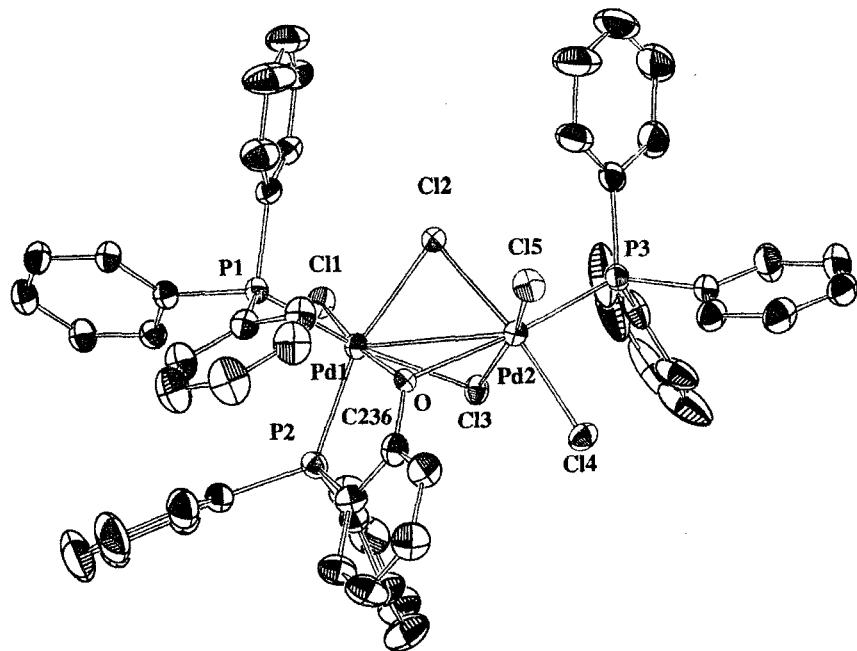
(continued)

TABLE 2. Continued

C(224)	7678(2)	3022(3)	2884(2)	82(3)
C(225)	7104(3)	3398(2)	2795(2)	92(3)
C(226)	6521(2)	3362(2)	3146(2)	72(2)
C(231)	5038(2)	3332(2)	3803(2)	47(2)
C(232)	5013(2)	3939(2)	3669(2)	64(2)
C(233)	4402(3)	4186(1)	3447(2)	77(3)
C(234)	3814(2)	3826(2)	3360(2)	73(2)
C(235)	3839(2)	3219(2)	3495(2)	59(2)
C(236)	4450(2)	2973(1)	3716(2)	48(2)
C(311)	3631(2)	708(2)	2184(2)	48(2)
C(312)	3716(3)	213(2)	1834(2)	72(2)
C(313)	3231(3)	101(2)	1408(2)	88(3)
C(314)	2661(3)	483(3)	1332(2)	76(3)
C(315)	2576(2)	978(2)	1682(2)	70(2)
C(316)	3061(2)	1091(2)	2108(2)	56(2)
C(321)	4026(2)	98(2)	3166(2)	55(2)
C(322)	3542(3)	126(2)	3604(2)	72(2)
C(323)	3322(3)	-398(3)	3896(2)	110(5)
C(324)	3585(4)	-949(2)	3695(3)	130(6)
C(325)	4069(4)	-977(2)	3257(3)	126(2)
C(236)	4290(3)	-453(2)	2992(2)	93(4)
C(331)	5102(2)	647(2)	2463(2)	56(2)
C(332)	5262(3)	923(2)	1953(2)	80(3)
C(333)	5939(4)	888(3)	1735(3)	131(7)
C(334)	6457(2)	576(3)	2027(4)	149(8)
C(335)	6298(3)	300(3)	2537(4)	141(7)
C(336)	5621(3)	336(3)	2755(2)	114(5)
O	4422(2)	2402(2)	3879(1)	31(1)

found in Table 1, Selected Frational Positional and Thermal Parameters (\AA^2) in Table 2 and relevant bond distances and angles are listed in Table 3. The molecular structure is shown in Figure 1.

This compound has two palladium atoms bound to each other through two chlorine bridges, there are three PPh_3 groups attached to the palladium atoms, one oxygen atom is bonded to Pd, and the carbon atom from the phenyl group. The structural formula is $\text{C}_{54}\text{H}_{44}\text{Cl}_{15}\text{OP}_3\text{Pd}_2$.


TABLE 3
Selected bond lengths [Å] and angles [deg]

Pd(1)–O	2.085(3)
Pd(1)–P(2)	2.284(2)
Pd(1)–P(1)	2.2994(14)
Pd(1)–Cl(1)	2.3279(14)
Pd(1)–Cl(2)	2.4590(14)
Pd(1)–Cl(3)	2.4663(14)
Pd(1)–Pd(2)	3.1251(6)
Pd(2)–P(3)	2.240(2)
Pd(2)–O	2.257(3)
Pd(2)–Cl(5)	2.303(2)
Pd(2)–Cl(4)	2.307(2)
Pd(2)–Cl(2)	2.3497(14)
Pd(2)–Cl(3)	2.3856(14)
O–Pd(1)–P(2)	84.51(10)
O–Pd(1)–P(1)	94.76(10)
P(2)–Pd(1)–P(1)	99.39(5)
O–Pd(1)–Cl(1)	170.93(10)
P(2)–Pd(1)–Cl(1)	100.92(6)
P(1)–Pd(1)–Cl(1)	91.53(5)
O–Pd(1)–Cl(2)	79.03(10)
P(2)–Pd(1)–Cl(2)	161.35(5)
P(1)–Pd(1)–Cl(2)	90.71(5)
Cl(1)–Pd(1)–Cl(2)	94.39(5)
O–Pd(1)–Cl(3)	80.21(10)
P(2)–Pd(1)–Cl(3)	89.22(5)
P(1)–Pd(1)–Cl(3)	169.63(5)
Cl(1)–Pd(1)–Cl(3)	92.52(5)
Cl(2)–Pd(1)–Cl(3)	79.46(5)
O–Pd(1)–Pd(2)	46.20(9)
P(2)–Pd(1)–Pd(2)	113.66(4)
P(1)–Pd(1)–Pd(2)	121.58(4)
Cl(1)–Pd(1)–Cl(3)	92.52(5)

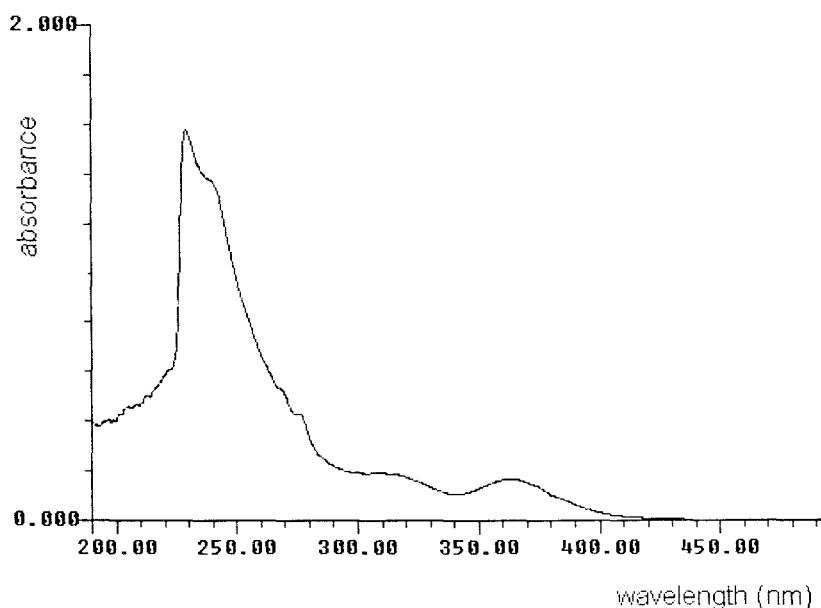

(continued)

TABLE 3. Continued

Cl(1)–Pd(1)–Pd(2)	124.74(4)
Cl(2)–Pd(1)–Pd(2)	47.96(3)
Cl(3)–Pd(1)–Pd(2)	48.78(3)
P(3)–Pd(2)–O	173.50(9)
P(3)–Pd(2)–Cl(5)	92.20(6)
O–Pd(2)–Cl(5)	89.66(9)
P(3)–Pd(2)–Cl(4)	90.19(6)
O–Pd(2)–Cl(4)	95.95(10)
Cl(5)–Pd(2)–Cl(4)	92.56(6)
P(3)–Pd(2)–Cl(2)	95.49(5)
O–Pd(2)–Cl(2)	78.18(9)
Cl(5)–Pd(2)–Cl(2)	93.08(6)
Cl(4)–Pd(2)–Cl(2)	171.82(6)
P(3)–Pd(2)–Cl(3)	99.21(5)
O–Pd(2)–Cl(3)	78.73(9)
Cl(5)–Pd(2)–Cl(3)	168.31(6)
Cl(4)–Pd(2)–Cl(3)	89.97(6)
Cl(2)–Pd(2)–Cl(3)	83.34(5)
P(3)–Pd(2)–Pd(1)	132.45(4)
O–Pd(2)–Pd(1)	41.81(8)
Cl(5)–Pd(2)–Pd(1)	118.53(5)
Cl(4)–Pd(2)–Pd(1)	120.90(4)
Cl(2)–Pd(2)–Pd(1)	51.01(4)
Cl(3)–Pd(2)–Pd(1)	51.04(3)
Pd(2)–Cl(2)–Pd(1)	81.03(3)
Pd(2)–Cl(3)–Pd(1)	80.18(4)
C(236)–O–Pd(1)	117.9 (3)
C(236)–O–Pd(2)	124.4 (3)
Pd(1)–O–Pd(2)	92.00(13)

FIG.1. Molecular structure for $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$.

FIG. 2. UV/visible absorption Spectrum of $\text{Pd}_2(\text{PPh}_3)_3\text{Cl}_5\text{O}$.

RESULTS AND DISCUSSION

The $^{31}\text{P}\{\text{H}\}$ NMR spectrum in d-chloroform showed one peak at δ 50.2 as a result of the fluxional behaviour of different sites at room temperature.

The UV/visible absorption spectrum is shown in Figure 2. The spectrum of the compound showed a broad absorption band due to the presence of aromatic groups in the triphenylphosphine ligand and several shoulders.

ACKNOWLEDGEMENTS

This investigation was supported by the CNPq, and FAPESP.

REFERENCES

1. Gaballah, I., Menad, N., Hartmann, D., Lyaudet, G., Michel, P. *Resources conservation and recycling*, 1994; (1-2):107.
2. Hall, K. P. and Mingos, D. M.P. *Prog. Inorg. Chem.* 1984; 32: 237.
3. Ito, L. N., Felicíssimo, A. M. P., Pignolet, L. H. *Inorg. Chem.* 1991; 30: 988.
4. Craighead, K. L. , Felicíssimo, A.M. P., Krogstad, D. A., Nelson, L. T. J. and Pignolet. L. H. *Inorg. Chim. Acta*, 1993; 31: 212 .
5. Sermon, P. A., Thomas, J. M., Keryou, K and Millward, G. R. *Angew Chem. Int. Engl.*, 1987; 26: 918.
6. Aubart, M. A., Chandler, B. D., Gould, R.A. T., Krogstad, D.A., Schoondergang, M. F. J. and Pignolet, L. H. *Inorg. Chem.* 1994; 33: 3724.
7. Rubinstein, L. I. and Pignolet, L; H. *Inorg. Chem.* 1996; 35: 6755.
8. Pignolet, L; H., Aubart, M. A., Craighead, K. L., Gould, R. A. T., Krogstad, D. A., Wiley, J. S. *Coord. Chem. Rev.* 1995; 143: 219.
9. Clements, F. S. *The Industrial Chemist* 1962; 345.
10. Campos, M.S., Felicíssimo, A. M. P. unpublished work ,submmited.

Date Received: November 10, 1999

Date Accepted: May 1, 2000